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Abstract. Small and large-amplitude elastic deformations of the armchair structure of single-walled carbon
nanotubes are investigated with emphasis on the cylindrical geometry. As starting model, we consider a
discrete one-dimensional lattice of atoms interacting via a Lennard-Jones type two-body potential. In an
expansion scheme using cylindrical coordinates where radial displacements are assumed negligible compared
to the angular motions, a sine-lattice Hamiltonian is derived. In the limit of small-amplitude angular
displacements, the dispersion spectrum of acoustic phonons is derived and the associate characteristic
frequency is given as a function of parameters of the model. In the large-amplitude regime, lattice vibrations
give rise to kink-type deformations which move undergoing lattice dispersion and lattice discreteness effects.
The dispersion law of the kink motion is obtained and shown to lower the effect of lattice discreteness,
giving rise to a vanishing Peierls stress for kink sizes of the order of a few lattice spacings. Implications
of the coupling of two armchair structures on the stability of vibrational modes of an individual armchair
nanotube are also discussed. A gap of forbidden modes is predicted in the phonon spectrum while the energy
needed to create a kink deformation in individual nanotubes is shifted in the presence of a wall-to-wall
interaction.

PACS. 81.07.De Nanotubes – 62.30.+d Mechanical and elastic waves-vibrations – 63.22.+m Phonons in
low-dimensional nanoscale materials – 63.20.Ry Anharmonic lattices modes

1 Introduction

Carbon nanotubes [1,2] have attracted a lot of attention
in the recent past for their fascinating elastic properties on
extremely small length scales [3,4]. Single-walled carbon
nanotubes are rolled graphite sheets which form cylindri-
cal tubes of finite diameters. Many striking features of
such nanostructures are known among which high flexi-
bility, high strength and high stiffness. In addition to me-
chanical properties [5–7], their vibrational modes have also
been discussed in detail [8–13] and longitudinal phonons
appear of considerable interest in the understanding of
several real nanostructures. Namely, longitudinal acous-
tic (LA) phonons play a relevant role in various aspects
of their stability as for instance their electronic and struc-
tural instabilities. To the first point, recent studies [14–21]
postulate the coupling bettwen LA phonons and the elec-
tronic system to trigger the Peierls instability. The role
of solitons in this instability has been discussed [16,18]
and the current viewpoint is that of an orientational or-
dering of carbon atoms on bonds, resulting from twists of
the nanotube with respect to the tube axis. Thus, such
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solitons (twistons) [18] are broken symmetry states in the
carbon bonds [22] due to the Peierls gap.

As for their structures, high flexibility, high strength
and high stiffness imply high stability of the structure
against lattice vibrations. In the small-amplitude regime,
lattice vibrations give rise to phonons whereas for large-
amplitude vibrations, soliton deformations are expected.
While phonons have been widely discussed [8–12], only
few works [23,24] deal with solitons and soliton-like exci-
tations on carbon nanotubes. The present study attempts
to collect some new insights for a better understanding
of these other interesting kinds of vibration modes in the
nanotube structures. In the same way, we will revisit the
approach to the phonon spectrum of carbon nanotubes
within an appropriate system of coordinates reflecting the
actual geometry of their structures [10].

Chirality is a useful ingredient in the modelling of vi-
bration properties of single as well as multi-walled nan-
otubes. In particular, chirality results into the depen-
dence of the vibration spectrum of the system on the tube
geometry as known for the characteristic Ag breathing
mode [2,6,7,25]. Thus, given the cylindrical geometry, the
tube diameter stands as a natural parameter which is in-
deed proven to interfere in the Ag mode frequency, being
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mutually inversely proportional. To a more general view-
point, the tube geometry should reflect itself in all excita-
tions of the system beside phonons. Namely, the charac-
teristic parameters of soliton excitations are also expected
to reflect the nanotube geometry.

The dominant many-body character of the inter-
actions between atoms in carbon nanotubes is now
a well established fact. In addition to being weak
and dispersive, many-body interactions are non-local
and non-bond forces and as such essentially of the
van der Waals type [25,26]. In fact, nowadays it is widely
accepted that van der Waals forces are the main sources
of stability of most nanostructured systems. Recently,
an Hamiltonian dynamical approach was introduced by
Astakhova et al. [23] in which they described the many-
body interaction by the Brenner potential [27]. From an
expansion of this potential, they attempted to extract a
generalized nonlinear Klein-Gordon equation which was
next transformed to the Korteweg-de Vries equation [28].
In this approach, atomic vibrations are confined along the
one-dimensional (1D) carbon lattice and the system dy-
namics is governed by one single local variable i.e. the
local displacement fields with respect to the equilibrium
positions of atoms along the chain. It turned out that the
nanotube geometry was not accounted for in the charac-
teristic parameters of their longitunal solitons.

As an alternative approach to this previous one, we
will instead parametrize the local displacement fields by
introducing radial and angular coordinates. Next, by fix-
ing the radial coordinate the system dynamics will be re-
duced to angular displacements which are measured with
respect to the chiral angle. We proceed with a generalized
Lennard-Jones (GLJ) potential [29].

In the next section, we introduce the model and
examine its characteristic features. By an appropriate
parametrization of the lattice displacements, we derive the
approximate anharmonic Hamiltonian as a multi-periodic
function of relative angular displacements. Next, we an-
alyze the spectrum of phonon modes of the approximate
model in the cylindrical coordinates. In Section 3, the dy-
namics of soliton-like deformations on the nanotube is in-
vestigated and an anlytical shape is introduced in terms
of kinks. In view of pronounced elastic properties of the
system, the kink defect is strongly dispersive and its oscil-
lation frequency obeys a dispersion law which is provided.
The effects of lattice discreteness on the kink shape will be
discussed in Section 4. Namely, the analytical expression
of the Peierls stress [30,31] will be derived as a function of
the system parameters. In Section 5, a brief discussion
of the stability of small and large-amplitude deformations
of a single tube in the presence of an inter tube interaction
will be carried out. Section 6 will be devoted to concluding
remarks.

2 The model and phonons

To start, consider a 1D lattice of atoms interacting
through a non-Hookes pair potential. Denoting by rn

the relative displacement with respect to the nth site

of the lattice, we can write down the total energy
of the system as:

E =
∑

n=1

[
M

2
ṙ2
n + VGLJ(rn+1 − rn)

]
(1)

where dot refers to the derivative with respect to time t, M
is the atomic mass and VGLJ is the pair potential energy.
We are interested with the dynamics of a 1D lattice in
which bond dispersions are govervend by a pair potential
of the form [29]:

VGLJ(r) = 4εo

[(σ

r

)n1 − 2
(σ

r

)n2]
(2)

where n1 and n2 are integers given such that n1 > n2,
σ is a characteristic length and εo a characteristic en-
ergy. VGLJ is a generalized Lennard-Jones (LJ) poten-
tial, indeed for (n1, n1) = (6, 12) we recover the classi-
cal LJ model [32]. The two-body potential defined in (2)
possesses two different interaction branches namely, a
short-range repulsive branch and a long-range attractive
branch. The existence of these two branches is useful for
bond-breaking processes which may result either from the
stretching or from the contraction of bonds largely be-
yond their equilibrium. From the theoretical viewpoint,
the GLJ potential suggests the existence of a characteris-
tic point ro at which the two interaction branches meet.
This characteristic point describes the dissociation point
of the system and is characterized by:

ro =
(

n1

2n2

) 1
n1−n2

σ,

VGLJ(ro) = −4
(

n1

2n2

) n2
n2−n1

εo (3)

where VGJL(ro) is the dissociation energy. For the bare
LJ model,

ro = σ, VGJL(ro) = −4εo, (4)

and for the (3, 9) model [29],

ro =
(

3
2

)1/6

σ, VGJL(ro) = −4
(

2
3

)1/2

εo. (5)

Though a free parameter of the model, σ can be chosen
depending on the situation at hand. Nevertheless, we do
not expect σ to exceed the lattice spacing ao by a large
amount. For illustrative purposes, if we set this parameter
to one lattice spacing, we find for ro a value of the same
order in the case of the bare LJ model, and a slightly larger
value (but less that 1.1 σ) for the (3, 9) potential. However,
their dissociation energies differ by a large amount (of
about 4 times) such that both models are actually quite
distinct.

Turning attention to our primary goal i.e. the applica-
bility of the above model on elastic deformations of single-
walled carbon nanotubes, we start by sketching a graphite
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Fig. 1. Sketch of a graphene sheet. Also shown are the char-
acteristic parameters of an armchair single-walled nanotube,
obtained by rolling the graphite sheet into a cylinder of diam-
eter along the chiral vector L. (a, b) are the hexagonal basis
vectors, (u, v) and (ex, ey) are two orthogonal basis vectors
constructed from the hexagonal basis and associate to the cir-
cular basis of the cylinder geometry and to the alignment of
carbon atoms along the 1D lattice of sites n.

sheet as in Figure 1. The figure also displays characteris-
tic parameters of the related armchair structure, where the
hexagonal basis is described by the unit vectors (a,b). In
this system of coordinates, the chiral vector L = Pa+Qb
with (P, Q) two integers referring to an armchair struc-
ture with a well defined chirality. For conveniences [15], it
is useful to introduce two new systems of coordinates [15]
i.e. (ex,ey) and (u, v). The last system connects directly
to the cylindrical geometry in such a way that the basis
vector u points parallel to the chiral vector L or also, along
the nanotube diameter. By simple geometrical relations,
we can express the basis vectors (u,v) in the orthogonal
basis (ex, ey) where ex indicates the main axis of the
nanotube deformation. We see in Figure 1 that along this
axis, carbon atoms align in a 1D chain on sites labelled n.

We can project the chiral parameters(chiral vector and
angle) of the armchair in the basis (u, v). Denote by Lo

and θo the resulting chiral parameters, and by rn the vec-
tor displacement field of an nth atom on the 1D chain
previously described. The relative displacement vector be-
tween the nth and the (n + 1)th atoms is then:

rn+1 − rn = �n+1un+1 − �nun, (6)

where �n refers to the radial coordinate in the basis sys-
tem (un,vn) moving with respect to (ex, ey). However,
�n will be assumed to vary very slowly compared to the
local angular variable θn, so it will be fixed as a constant
parameter denoted �o. �o thus becomes another charac-
teristic parameter of the system, from its definition �o is
the depth of the deformation related to the displacement
vector rn along the tube diameter.

To take account of the equilibrium (�Lo, θo) with re-
spect to (u, v), we assume rn+1 − rn to be zero at this
equilibrium. This allows us defining appropriate coordi-
nates with respect to both the circular basis (u, v) and
the equibrium structure characterized by (�Lo, θo). Call θn

the local angular displacement associate to the nth site of
the 1D chain and set rn = rnun, where:

un = ex cos ϕn + ey sin ϕn, ϕn = θn + θo. (7)

In the (ex, ey) coordinate system, the magnitude of the
relative displacement vector (6) is then:

r2 = 2�2
o [1 − cos (θn+1 − θn)] . (8)

We can now proceed to the key transformation i.e. the
expansion of (2) in a Taylor series with respect to the
relative angular variable θn+1 − θn. We obtain:

VGLJ = Vo(n1, n2) +
∞∑

k=1

Vk(n1, n2) cosk (θn+1 − θn) (9)

with:

Vk(n1, n2) = 4
[
b
(n1)
k

(
σ√
2�o

)n1

− 2b
(n2)
k

(
σ√
2�o

)n2
]

εo

(10)

b
(j)
k =

(−1)k

k!
j

2
(j + 2)

2
...

(j + 2k − 2)
2

. (11)

The anharmonic series (9) is a multi-periodic sinusoidal
potential where the potential period is determined by the
integer k. e.g., for k = 1 we obtain the sine-lattice (SL)
potential [33] and for k = 2 a double sine-lattice (DSL)
potential. Below we will focus on the SL model, since the
inherent anharmonicity is already enough to promote non-
linear deformations. However, to proceed further we need
to complete our model by the kinetic energy. This last
part is derived from the consideration of the elementary
displacement d rn ∼ �odθn, in the direction of the angular
vector basis vn. In this case, the total Hamiltonian (1)
reduces to the SL Hamiltonian [31,33]:

HSL =
∑

n=1

[
M�2

o

2
θ̇2

n + VSL (θn+1 − θn)
]

,

VSL (θn+1 − θn)} = V1(n1, n2) cos(θn+1 − θn). (12)

From (10–11) we can check that V1(n1, n2) is negative
whatever the values of parameters n1,2 and σ but provided
that �o > σ. Below this last constraint will be specified
more accurately when discussing the stability of phonons.

As a preliminary step, we will examine the spectrum
of small-amplitude excitations of the SL Hamiltonian as
a check of its relevance to phonon excitations in carbon
nanotubes. If we linearize the cosine function and look for
angular excitations of the form:

θn ∼ exp i(ωq + n q , ao), (13)

we derive the following dispersion law for small-amplitude
angular modes,

ω2
q = 4ω2

o sin2 q ao

2
,

ω2
o = −V1(n1, n2)/M�2

o. (14)

This dispersion relation is provided with the condition
V1(n1, n2) < 0 which ensures harmonic acoustic vibra-
tions of the system as the armchair structure is slightly
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twisted with respect the chiral angle θo. Also of interest
is the 1/�o law of the characteristic frequency of acoustic
vibrations. Indeed, the ratio σ/�o makes the dependence
of V1 on �o weaker than the 1/�o law in the characteristic
frequency ωo. To this point, it is worthwhile remarking
that expressed in terms of the model parameters, the con-
dition V1(n1, n2) < 0 turns to �o > ro/

√
2. Since, accord-

ing to a previous discussion, the dissociation length ro is
about one lattice spacing or slightly greater, �o is expected
not to be far from a few lattice spacings. So the ratio σ/�o

should be always less but close to one.

3 Kink deformations

In the large-amplitude regime, angular displacements of
the Hamiltonian (12) obey the following set of difference
differential equations:

θn,tt − ω2
o [sin (θn+1 − θn) + sin (θn−1 − θn)] = 0. (15)

This is the SL equation [33], it admits kink solution which
can be described by an ansatz:

θn(t) = 2 arctan [exp (n q ao − ωt)] . (16)

This kink represents a topological deformation located at
site n of the discrete 1D chain, moving forward at a ve-
locity depending both on the discrete structure and the
anharmonic dispersion of the propagation medium. Com-
bined effects of these two features of the lattice give rise
to the following dispersion relation:

ω2 = 4ω2
o sinh2(q ao/2). (17)

The quantity ωo now acquires a quite different physical
meaning, i.e. it sets the kink threshold velocity hence re-
flects the response of the kink shape to the characteristic
properties of the propagation medium.

According to the argument of (16), the kink size is
inversely proportional to q and the kink propagation
velocity is determined by the dispersion relation (17).
Namely, from this last relation we derive the group ve-
locity by setting:

ϑ(q) =
∂ω

∂q
. (18)

In the limit q → 0, ϑ(q) indeed displays a threshold value
given by ϑo = ωoao. One sees that this threshold velocity
too is inversely proportional to the radial coordinate �o.
In Figure 2, we plot the reduced group velocity ϑ(q)/ϑo

as a function of the kink size 1/q. We note that the kink
velocity gets slowed down with increasing kink size. More-
over, the group velocity rapidly saturates to the minimum
threshold ϑo at finite, but relatively large values of the
kink width. It is also instructive to underline the quali-
tative agreement between the curve in Figure 2, and the
one obtained by Astakhova [23] for the longitudinal soliton
(see Fig. 2 in this paper). This agreement is to our view a
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Fig. 2. The reduced group velocity of the kink defect as a
function of the dimensionless soliton width (i.e. in unit of the
lattice constant ao).

clear proof of the fact that both approaches are consistent
in spite of the assumption of different pair potentials.

To close this section, we look at the characteristic en-
ergy of the angular kink obtained in (16). In the contin-
uum limit (i.e. 1/q � ao and n ao → x), we find:

E =
M�2

oω
2

qao
. (19)

E vanishes at large defect sizes, a behaviour reminiscent
of the kink velocity plotted in Figure 2.

4 Effect of Peierls stress on the kink defect

Actually, (16) is not an exact solution of the nonlinear
discrete equation (15), instead it describes the solution
of the continuum version of that equation. We have seen
that the dispersion relation (17) introduced a constraint
on the kink velocity and that the strength of dispersion
was enhanced by lattice discreteness. To fully take account
of the effect of lattice discreteness, we must calculate the
kink characteristic energy in the discrete limit. So doing,
in addition to (19) a residual term appears which is just
the mechanical stress provided by the lattice discreteness
and tending to trap the continuum kink to the discrete
lattice sites. This phenomenon is well known in crystal
growth processes where the mechanical stress is referred to
as Peierls stress [34]. In a previous work, we developed an
approach to such phenomena in the specific case of SL sys-
tems [31]. Here we will just follow the steps described in
that previous work. Note to start that by retaining only
the site coordinate n in (16), we prevent the continuum
kink shape from relaxing out of the equilibrium positions
on the discrete lattice. A dramatic consequence of such
assumption is that the kink deformation will remain in-
finitely pinned to site valleys and may not survive lattice
discreteness effects. To avoid this we introduce a separate
coordinate for the kink center of mass say no. It is useful
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Fig. 3. Amplitude of the Peierls stress, plotted versus the
dimensionless soliton width (i.e. in unit of the lattice con-
stant ao).

to stress that since this residual coordinate enters the kink
propagation front, it does not affect at all the kink shape
owing to the translational invariance of the kink topolog-
ical shape. Thus we can rewrite the static part of (16) as
follow:

θn(t) = 2 arctan [exp q (n − no)ao] . (20)

Inserting (20) in the strain part of the SL Hamiltonian (12)
and carrying out Fourier transformations in the way devel-
oped in reference [31], we obtain the following expression
as the height of the Peierls-Nabarro potential:

εp(q) =
2π2M�2

oω
2

aoq2 sinh(2π2/qao)
. (21)

εp(q) is plotted in Figure 3 as a function of the kink
size 1/q, where the energy unit is fixed by the quantity:

Vo = 8π2Mao�
2
oω

2
o . (22)

A most striking feature emerging from curve of Figure 3
is the decrease of the Peierls stress as the kink size in-
creases. Otherwise, we also see that the Peierls stress is
almost vanishing at finite values of the kink size. The van-
ishing of the Peierls stress at short kink sizes is actually
the result of combined effects of the lattice discreteness
and the lattice dispersion, as suggested by the depen-
dence of εp(q) on ω. In the present case, Figure 3 indi-
cates that a kink defect of size about a lattice spacing
will almost be insensitive to the lattice discreteness. This
behaviour is as pertinent as it departs from known pre-
dictions [35,36] according to which the narrow the kink
the stronger the pinning effects. In fact, that behaviour
is specific to the SL model and connects to the relative
displacement variable in the sine term which introduces
strong anharmoniticy in interatomic interactions. In this
last respect, the SL model stands as a valuable candidate
in view of the specific elastic properties of carbon nan-
otubes. It may for instance provide rich insights on the

mechanism of heat transport processes in these materials
as compared to Frenkel-Kontorova-like materials [37,38].
We also deeply believe that this model can furnish more
relevant informations one the role of phonons in the Peierls
instability recently predicted in carbon nanotubes, and
thought to result from bond alternations [22] triggered by
vibrations of the nanotube structure which couple to elec-
trons in carbon bonds.

5 Stability of lattice vibrations of individual
nanotubes in multi-wall structures

We will end the study by examining the effect of
a wall-to-wall interaction on the lattice vibrations of a
single-walled carbon nanotube. Recent experiments on
double-walled carbon nanotubes [42–44] give clear indi-
cations of the effects of this additional interaction on the
stability of the structure of individual nanotubes. Very re-
cently [10], a theoretical approach to the phonon modes
of double-walled carbon nanotubes was suggested using
two-coupled harmonic oscillators. Here we reformulate the
problem in terms of cylindrical coordinates and follow-
ing a distinct physical model. Thus, in a spirit close to
Kolmogorov et al. [39], we view the double-wall structure
as a nanotube-substrate system except that presently, the
substrate is also a nanotube such that we are faced with
two interpenetrated cylindrical tubes. Suppose the sub-
strate tube is a rigid structure with respect to the adsor-
bate tube in such a way that only atoms of the adsorbate
tube ar allowed to move. In this case, the registry displace-
ment of the two interacting single-wall structures can be
described by one single variable related to displacements
of the adsorbate nanotube. Therefore, with help of the
cylindrical coordinates, we model the wall-to-wall inter-
action by a phenomenological Frenkel-Kontorova [40,41]
potential i.e.:

Uint(ϕ) = Uo(1 − cos ϕn). (23)

The nature and strength of the inter tube interaction are
fixed by the magnitude and sign of the potential ampli-
tude Uo. Combining (23) and (12) and linearizing the new
equation of motion, the dispersion relation for the angular
phonon modes becomes:

ω2
q = 4ω2

o sin2 q ao

2
− Ω2,

Ω2 = Uo/M�2
o. (24)

In Figure 4, we draw ω derived from the dispersion re-
lation (24) as a function of the phonon wavector q, for
arbitrary but positive values of Uo. We see that a gap de-
velops in the phonon dispersion and is wider and wider
as Uo is increased. Analytically, we obtain the following
expression of the characteristic acoustic frequency of the
adsorbate tube in the double-wall configuration:

ω2 = ω2
o − Ω2. (25)

Both this last expression and formula (24) suggest that the
effect of the energy gap Uo is to lift the phonon spectrum of
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Fig. 4. Dispersion spectra of acoustic phonon on a single-
walled carbon nanotube in the double-wall configuration. The
inter tube interaction Uo increases from zero (full line) assum-
ing arbitrary values.

the single-walled nanotube. Namely, the upper threshold
frequency is slowed down to a value obeying (25) while
the allowed phonon modes of the first Brillouin zone are
confined within the wavector interval:

2
ao

arcsin
(

Ω

2ωo

)
≤ q ≤ π. (26)

Keep in mind the possibility to monitor this interval as
well as the threshold frequency (25) by varying the radial
coordinate �o.

In the large-amplitude regime, we also find an energy
gap that shifts the threshold value of the kink creation en-
ergy. As a consequence of this energy gap, the kink width
no more assumes arbitrary values but:

1/q ≤ ao

2arcsinh
(

Ω
2ωo

) . (27)

This constraint will change the effect of the Peierls stress
on the kink shape as evidenced by the dependence of the
Peierls-Nabarro barrier (21) on ω, i.e. on the kink disper-
sion law.

6 Conclusion

We have investigated the lattice dynamics of armchair
single-walled carbon nanotubes in the discrete limit us-
ing a two-body potential of the Lennard-Jones type. The
new aspect of the present study is that both phonons and
soliton deformations account for the cylindrical geometry.
Following a Fourier expansion of the two-body potential,
we derived a discrete nonlinear Klein-Gordon Hamiltonian
in which the substrate potential provides both nonlin-
earity and dispersion. This particular form of nonlinear
Klein-Gordon system we called sine-lattice model is well
known in the literature [33]. One most relevant feature of

the sine-lattice model is that while resembling the Frenkel-
Kontorova model, it avoids the weakness of strong rigidity
related to the assumption of absolute displacements. This
important and specific feature of the sine-lattice model
can be crucial for a best description of the high strength,
high flexibility and high stiffness of systems as carbon nan-
otubes.

In spite of their theoretical characters, our results
show clear indications of their applicability to carbon nan-
otubes. First, the radial coordinate �o has its maximum
bound to the tube diameter Lo. This means the depth of
deformations related to vibrations of the nanotube struc-
ture will never exceed the tube diameter. In this context,
the inverse law dependence of the characteristic phonon
frequency on the radial coordinate �o is in qualitative
agreement with experiments. In fact, the relationship be-
tween �o and the threshold acoustic frequency of acoustic
vibrations, ωo, is a clear indication of an interplay of the
characteristic length scales of the system in their vibra-
tional properties.

In the framework of the sine-lattice model, the size
scale at which kink defects get depinned to the lattice
discreteness is of a few lattice spacings. This result sug-
gests that narrow kinks will play fundamental role in var-
ious transport phenomena in the discrete SL system, as
opposed to the commonly predicted pinned kink states
in Frenkel-Kontorova materials. As noted, the weak ef-
fect of the Peierls stress on finite-size kink deformations
is due to the balance of the lattice discreteness and the
strong lattice dispersion related to the anharmonicity of
interatomic interactions. This is specific to the sine-lattice
model which thus stands as an excellent candidate for the
particular elastic properties of carbon nanotubes.

The discussion carried out in the last section also pro-
vides valuable informations onto the understanding of the
stability of phonons and soliton deformations on individ-
ual nanotubes in multi-walled nanotubes. Indeed, due to
the relaxed dynamics of individual nanotubes we can ex-
pect both commensurate and incommensurate orderings
of the interacting nanotubes. The phonon-mode gap and
the energy gap in the creation energy of kink deforma-
tions, estimated in this last part of the work, are relevant
physical parameters. Indeed, they reflect changes in the
hardness (i.e. in the elastic properties) of the structure
of individual nanotubes to accommodate the multi-wall
configuration.

I express thanks to the referees for their comments which
deeply enriched this work.
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